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Problems involving the solution of the heat-conduction equation 
with nonlinear boundary conditions have recently become Of practical, 
as well as theoretical, interest. This is due to the fact that in many 
modern applications one must take into account radiative boundary 
conditions. Despite the difficulties associated with the solution of 
nonlinear functional equations, the reduction of the boundary value 
problem to such equations makes it possible to gain additional in- 
formation about the characteristic variables of the problem. 

In addition to the temperature field, one such variable of con- 
siderable importance is the heat flux. In this paper we consider the 
asymmetric heating of a plane-parallel infinite plate of thickness R. 

The boundary value problem considered here can be reduced to 
a system of two nonlinear integral equations of Volterra type for the 
net radiative heat flux. The problem can be formulated as follows: 
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Here H is a reduced radiative heat transfer coefficient, a is the 
thermal diffusivity, To is the initial temperature of the plate, h is 
a reduced convective heat transfer coefficient, T x is the absolute 
temperature of the radiative source, and Tz is the absolute tempera- 
ture of the surroundings. 

Applying the Laplace transform to (1). we obtain the general solu- 
tion of the problem in the transform plane 
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Applying the inverse transformation to (2), we obtain an expression 
for the temperature field in the plate, which in dimensionless form 
reads 
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Equation (S) is a formal solution for the temperature field 
0(x, r) in terms of the net radiative heat fluxes ~#~ (0, r), ~o 1 (R, r). 
Thus in order to calculate the temperature field one must first de- 
termine the radiative heat fluxes. From (a) we obtain a system of 
two nonlinear integral equations for the net radiative fluxes ~0 0 and 
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To solve this problem, we reduce (3) and (4) to finite-difference 
form. We divide the interval [0, r]  into m equal parts and assume 
q0 and ~r to be constant over each subinterval. In other words, for 
the sake of simplicity we use the rectangular-step formula, although 
in principle we could use any quadrature formula of higher accuracy. 
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The accuracy of our approximation depends on the size of the step 
&r, i . e . ,  

lira % C0, ATm) ---, % (0, T), lim (Pl (R, Azm) --, ~ (B, T). 
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As is well known, one of the most effective methods of solution 
of nonlinear functional equations is Newton's method. This method 
has been extended to the solution of systems of nonlinear algebraic 
equations. The conditions for the convergence of this method have 
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been fully discussed by Kantomvich [1). Assuming that the  f ini te-  
difference form of (4) satisfie-~ all the conditions necessary for the 
convergence of  the iteration, we find the roots ~o (0, Arm) and 
~l  (R, Arm) for every m by Newton's method,  Thus, uSing the 
f inite-difference form of (3) and (4), we obtain the values of  the 
net radiative fluxes and, consequently, the temperature field for 
arbitrary r = Arm.  

The figure shows ~0 (0, ~), ~1 (R, ~), O (~l, T) as functions of 
t ime  for the following geometrical  and thermophysical parameters: 

~ . x / R ,  R = 0.03 m, 

a---- 3.3. i0 -3 m~/hr, T 0 = 2 5 3 ~  
T1 = 8i5 ~ K, T 2 = 300 ~ K, 

h = i m "1, H = 4 . t88 ' i0  -~ degCS/m.  

The computations were carried out on the M-20 computer of  the 
Computing Center of  the Siberian Branch, Academy of Sciences 
USSR. The error of the results does not exceed 10 "s. 
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